

EVASOLK

Evaluation of Solar Cooling in Comparison to Reference Technologies

Björn Nienborg Edo Wiemken Anna Raquel Petry Elias

Fraunhofer Institute for Solar Energy Systems ISE

Partners: ILK Dresden, ZAE Bayern

IEA SHC Task 48 – 3rd Expert Meeting

Gleisdorf, Austria

September 10-11, 2012

www.ise.fraunhofer.de

EVASOLK - Perspectives of solar cooling

(closed cycle systems)

EVASOLK - Perspectives of solar cooling

(closed cycle systems)

Reference technology: monitoring

- Conventional installations; cross-section of technologies
- Monitoring by ILK Dresden, ZAE Bayern

	Technology	Rated capacity [kW]	Distribution	Monitoring status	Remark		
Building cooling (comfort air-conditioning)							
1	Chilled water	13.1	Fan coils	running			
2	Chilled water	46.6	Ventilation	running			
3	Chilled water	60	Ventilation	running			
4	Mono-split	2.65	Fan coils	running	Type: hardware store		
5	Mono-split	5.0	Fan coils	running	Type: brand supplier		
6	Multi-split	40	Fan coils	running	6 condensor units		
Commercial / process cooling							
7	Normal cooling	17	Cooling cell	running	brine system		
8	Normal cooling	2	Cooling cell	running	direct evaporation		

Reference technology: monitoring

- Performance of conventional installations
- Data base for models in comparative study

EVASOLK - Perspectives of solar cooling

(closed cycle systems)

Basic approach:

- Annual simulation with TRNSYS;
 generic models (TDC, CCH, HP, collectors, ..)
- Cost curves for key components (present costs)
- Country specific energy prices
- Primary energy savings and CO₂-avoidance calculation in comparison to reference with country specific conversion numbers
- Including emissions of typical refrigerant losses
- Life cycle: 20a (collectors, TDC); 15a (CCH, HP)
- Capital costs: rate of interest 5%
- Annual energy price increase: 5% (electricity), 3% (natural gas)

Overview solar fractions

- location
- TDC-Type
- FPC: 3...6 m²/kW_{P_TDC}
- ETC: 2.5...5.5 m²/kW_{P TDC}

Cold backup: Air-cooled chiller

Reference: Multi-Split-System

10

Evaluation

- Combined economic primary energy related evaluation figure:
 - Costs of saved Primary Energy

$$\mathbf{CPE_{LCC}} = \Delta LCC / (PE_{Ref} - PE_{Sol})$$
 \in / kWh_{PE_saved}

with

ΔLCC = (Life cycle cost, Solar system – Life cycle cost, Reference)
 LCC include investment and capital costs, operation
 and maintenance costs of 20 years life cycle

 $(PE_{Ref} - PE_{Sol})$ = difference in PE demand between Reference and solar configuration within life cycle (20a)

- Precondition: primary energy is saved \Rightarrow (PE_{Ref} PE_{Sol}) > 0
- then: CPE_{LCC} is <u>positive</u> in case of higher life cycle costs of solar based system
- In case, solar based system shows lower life cycle costs than reference: CPE_{LCC} is <u>negative</u> (divison of one benefit by another: <u>not useful</u>)

Übersicht Kosten der Primärenergieeinsparung

- location
- TDC-Type
- FPC: 3...6 m²/kW_{P_TDC}
- ETC: 2.5...5.5 m²/kW_{P TDC}

Cold backup: Air-cooled chiller

Reference: Multi-Split-System

- Configuration with lowest PE-avoidance costs
- **S0**: present cost situation
- C_{LCC} / Q_{th} : costs per kWh thermal useful energy Q_{th} : thermal useful energy [Σ ($Q_{Heating}$, $Q_{Cooling}$, Q_{DHW})] within life cycle

■ S1 : collector system costs: -10% *

^{*} goal Roadmap of BSW: Solar thermal system costs -14% until 2020

- S2 : collector system costs: -10%, TDC system costs -25% *
- * goal Roadmap of BSW: Solar thermal system costs -14% until 2020; forecast small/medium TDC-systems: -35% until 2020 (Dr. U. Jakob, Green Chiller)

- **S3**: collector system costs: -40%, TDC system costs -50% *
- * goal Roadmap of BSW: Solar thermal system costs -43% until 2030; forecast small/medium TDC-systems: -50% until 2030 (Dr. U. Jakob, Green Chiller)

Effect of thermally driven chiller capcacity

- Reducing capacity of thermally driven chiller (backup chiller size remains constant)
- P_TDC: 75% of max. cooling load (regular layout in case study)

P_TDC:

85 kW (Toulouse)

94 kW (Athens)

flat-plate collector

3-6 m² per kW _{P_TDC}

cold backup:
el. compr. chiller

heat backup:
gas boiler

17

Effect of thermally driven chiller capcacity

- Reducing capacity of thermally driven chiller (backup chiller size remains constant)
- P_TDC: 50% of max. cooling load

P_TDC:
56 kW (Toulouse)
62 kW (Athens)
flat-plate collector
5-8 m² per kW _{P_TDC}
cold backup:
el. compr. chiller
heat backup:
gas boiler

Effect of thermally driven chiller capcacity

- Reducing capacity of thermally driven chiller (backup chiller size remains constant)
- P_TDC: 33% of max. cooling load

P_TDC:

38 kW (Toulouse)
42 kW (Athens)

flat-plate collector
5-8 m² per kW _{P_TDC}

cold backup:
el. compr. chiller

heat backup:
gas boiler

Costs of PE-saving: Sensitivity

Effect on CPE by variation of +/- 10% relative of governing factors

Sensitivity to Cost per saved kWh primary energy:					
Hotel, Palermo , flat plate collector of size 5 m ² per kW chilling capacity					
of thermally driven chiller (absorption)					

Hotel, small flat-plate collector cold backup: el. compr. chiller heat backup: gas boiler

of thermally driven chiller (absorption)					
	Relative change % of rated value	Influence to CPE _{LCC} in %			
Electricity price	+ 10	-3			
Electricity price	- 10	+ 3			
Fossil fuel price	+ 10	-3			
Fossil fuel price	- 10	+ 4			
Seasonal efficiency of	+ 10	+ 15			
cooling system in reference	- 10	- 12			
Cost of collector	+ 10	+8			
Cost of conector	- 10	-7			
Cost of thermally driven	+ 10	+ 6			
chiller (TDC)	- 10	-6			
Installation cost	+ 10	+ 4			
Histariation cost	- 10	-3			
Interest rate	+ 10	+ 6			
interest rate	- 10	-6			
Annual increase energy cost	+ 10	-3			
(electricity + fuel)	- 10	+ 3			

Comparison ST - PV

- 2.5...6 m²/kW_{P TDC} for ST and PV
- PV: grid connected (unlimited storage)

Summary (1)

- Investigated so far: solar cooling with 1-effect thermally driven technology in standard configurations
- At appropriated sites, high PE savings and solar fractions possible
- Most promising: applications with additional use of solar thermal system (e.g., high DHW demand)
- Life cycle costs still higher than reference (no funding considered)
- To compete economically with reference systems: pronounced decrease in component costs (collector, thermally driven chiller) is necessary
- With cost projection of industrial associations: economic equality to reference obtained, but not in a short term
- High sensitivity to EER in reference: efforts necessary to increase electrical efficiency of solar cooling systems (with cold backup: no comfortable distance to reference)
- Sensitivity to energy price: small

Summary (2)

- Further measures for optimization
 - avoidance of cold backup, where compatible with comfort requirements
 - careful decrease of TDC capacity (no peak-load design)
 - use of medium-temperature heat (e.g. for DHW pre-heating, not studied)
- Next steps
 - Comparison with reference + grid connected PV
 - Systems with heat pumps
 - Systems with concentrating collectors, 2-effect TDC
 - Comparative study on solar process cooling (ILK Dresden)
 - Evaluation of reference technology (ZAE Bayern, ILK Dresden)

EVASOLK is supported by the federal Ministry for the Environment, Nature Conservation and Nuclear Safety (FKZ 0325966 A)

Thank-you for your attention!

Fraunhofer Institute for Solar Energy Systems ISE

Björn Nienborg

www.ise.fraunhofer.de

bjoern.nienborg@ise.fraunhofer.de

- sEER of solar thermal systems (H052 configurations): 7.5 8.9 (collector and TDC system with pumps, heat rejection)
- average sEER_{ST_total}: total system incl. backup chiller, chilled water pump (average of configurations per site)

sEER:
cold production
electricity input

EER

- sEER of solar thermal systems (H052 configurations): 7.5 8.9 (collector and TDC system with pumps, heat rejection)
- average sEER_{ST_total}: total system incl. backup chiller, chilled water pump (average of configurations per site)

Example: Residential (1)

- Small application: multi-family building (< 20 kW capacity TDC)
- Cold backup: el. compression
- Reference: multi-split system
- Variations:
 - Collector size
 - Collector type
 - Ab-/Adsorption chiller

specific collector area:

3 4 5 6 m² / kW TDC_capacity : FPC 2.5 3.5 4.5 5.5 m² / kW TDC capacity : ETC

EvaSolK

Example: Residential (1)

EvaSolK

Example: Office

- Base for cost curves components:
 - Survey in IEA SHC Task 38
 - Realised systems, own queries
 - Catalogue sales prices

EvaSolK

Example: Hotel

